点到直线的距离公式
点到直线的距离公式
点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离,两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一,两点间距离公式叙述了点和点之间距离的关系。
空间点到直线的距离公式:设直线L的方程为Ax+By+C=0,点P的坐标为(Xo,Yo),则点P到直线L的距离为|AXo+BYo+C|/√(A²+B²)。
点到直线距离公式
总公式:
设直线L的方程为Ax+By+C=0,点P的坐标为(Xo,Yo),则点P到直线L的距离为:|AXo+BYo+C|/√(A²+B²)。
考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)
引申公式:
公式①:设直线l1的方程为Ax+By+C1=0;直线l2的方程为Ax+By+C2=0。
两直线位置关系
直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0
1.当A1B2-A2B1≠0时,相交
2.A1/A2=B1/B2≠C1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=0,垂直
标签: